Customer Lifetime Value Modeling with Applications in Python and R

Lessons and experiences from industry and research on how to become a customer-centric organisation

Bart Baesens and Arno De Caigny

Customer Lifetime Value Modeling with Applications in Python and R

Lessons and experiences from industry and research on how to become a customer-centric organisation

by Bart Baesens and Arno De Caigny

Copyright © 2022 Bart Baesens and Arno De Caigny. All rights reserved.

No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the authors, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. For permission requests, write to:

Bart Baesens, Naamsestraat 69, 3000 Leuven, Belgium, bart.baesens@kuleuven.be.

First Edition

ISBN: 9798847676137

Cataloging data: customer lifetime value, customer relationship management, data science, analytics, machine learning.

Font license notice: font families used in this book: Lora by Cyreal, licensed under the Open Font License (OFL), and Source Sans Pro by Paul D. Hunt, licensed under the Open Font License (OFL).

Dedicated to Ann-Sophie Baesens, Victor Baesens, and Hannelore Baesens – Bart

Dedicated to Zosia Daniels - Arno

Contents

Co	ontents	5
Pı	reface	11
	About This Book	11
	What Makes This Book Different?	12
	Who This Book Is For?	13
	Structure Of The Book	14
	Additional Learning Material	16
	Front Cover	17
	About The Authors	18
1	Introduction to CLV	21
	Overview	21
	Setting The Stage	22
	Definition	25
	Key Parameters	26
	Customer Equity	28
	Industry Adoption	30
	Marketing Actions To Optimize CLV	31
	Approaches To Model CLV	35
	Closing Thoughts	37
	Application In Python/R	38
	Quiz	39

2	The CLV Analytical Toolkit	43
	Overview	43
	The Analytical Process Model	44
	Data Preprocessing	46
	Linear Regression	52
	Logistic Regression	57
	Decision Trees	60
	Ensemble Methods	68
	Random Forests	69
	XGBoost	70
	Evaluating Predictive Analytical Models	71
	Clustering	77
	Association Rules	85
	Sequence Rules	89
	Closing Thoughts	91
	Application In Python/R	92
	Quiz	93
3	The RFM Framework	107
	Overview	107
	Basic Idea	108
	Recency	109
	Frequency	111
	Monetary	111
	RFM Correlations	112
	Operationalizing RFM	114
	RFM Usage	118
	RFM Extensions	121
	Closing Thoughts	123
	Application In Python/R	124
	Quiz	125

4	Customer Acquisition	131
	Overview	131
	Basic Idea	132
	Target Definition	136
	Data	137
	Developing A Customer Acquisition Model	141
	Evaluating Customer Acquisition Models	144
	Closing Thoughts	146
	Application In Python/R	147
	Quiz	148
5	Response Modeling	153
	Overview	153
	Basic Idea	154
	Marketing Campaigns	154
	Target Definition	156
	Data	157
	Feature Engineering	162
	Developing Response Models	165
	Uplift Modeling	169
	Cross-, Up- and Down-Selling	180
	Campaign Management	182
	Closing Thoughts	186
	Application In Python/R	188
	Quiz	189
6	Churn Prediction	201
	Overview	201
	Basic Idea	202
	Target Definition	203
	Data	205
	Developing Churn Prediction Models	208
	Social Networks	213
	Uplift Modeling	220

	Churn Prediction Versus Churn Prevention	221
	Profit-Driven Evaluation	223
	Profit Driven Classification	231
	Our Research on Churn Prediction	237
	Closing Thoughts	243
	Application In Python/R	244
	Quiz	245
7	Markov Chains	257
	Overview	257
	Basic Idea	258
	Example	260
	Simulations	262
	Markov Reward Process	264
	Markov Decision Process	267
	Customer Heterogeneity	271
	Customer Migration Mobility	272
	Modeling Customer Migrations	273
	Closing Thoughts	276
	Application In Python/R	277
	Quiz	279
8	Customer Journey Analysis	285
	Overview	285
	Basic Idea	286
	Challenges	290
	Process Mining	293
	On-Line Customer Journey Analysis	295
	Closing Thoughts	304
	Application In Python/R	305
	Quiz	300
9	Probability Models	311
	Overview	311
	Basic Idea	312

	Pareto NBD Model	312
	Gamma/Gamma submodel	315
	CLV Model	317
	Closing Thoughts	317
	Application In Python/R	318
	Quiz	319
10	Market Segmentation	323
	Overview	323
	Basic idea	324
	Criteria For Successful Market Segmentation	328
	Segmentation Bases	332
	Segmentation Methods	334
	Rule Based Methods	335
	Clustering Methods	336
	Mixture Methods	338
	Neural Networks	342
	Determining The Number Of Segments	347
	Elbow Method	349
	Indices	350
	Cross Validation	352
	Profiling	353
	Closing Thoughts	356
	Application In Python/R	356
	Segmentation And Profiling	356
	Using Segmentation To Improve Customer Scorin	g357
	Quiz	359
11	Recommender Systems	369
	Overview	369
	Basic Idea	370
	Business Value	371
	Examples	373
	Impact	375

	Items And Users	376
	Personalized Versus Unpersonalized Recommendations	s 377
	Challenges	378
	User Interest	379
	Rating Matrix	381
	Recommender System Workings	386
	Evaluating Recommender Systems	389
	User-User Collaborative Filtering	397
	Item-Item Collaborative Filtering	404
	User-User Versus Item-Item CF	406
	Collaborative Filtering Evaluated	407
	Closing Thoughts	408
	Application In Python/R \ldots	410
	Quiz	411
12	Deploying, Governing and Monitoring	421
12	Deploying, Governing and Monitoring Overview	421 421
12		
12	Overview	421
12	Overview	421 422
12	Overview	421 422 425
12	Overview	421 422 425 427
12	Overview	421 422 425 427 430
12	Overview	421 422 425 427 430 431
12	Overview	421 422 425 427 430 431 434
12	Overview	421 422 425 427 430 431 434 437
	Overview	421 422 425 427 430 431 434 437 438

Preface

About This Book

Firms and organisations cannot exist without customers. They essentially constitute the key ingredient to make a firm profitable and add shareholder and societal value. Despite recent technological advances in both data storage as well as processing and analysis, many small to large-scale firms are still struggling to quantify customer value, optimise customer relationships, facilitate customer experiences and identify customer journeys.

Due to a nearly continuously expanding product portfolio, with new products and services being developed and marketed on an on-going basis, along a diversity of existing as well as innovative channels, modeling customer lifetime value is a far from simple exercise with many challenges and difficulties arising. More specifically, throughout our dealings with firms, we often found that simple questions such as "Who is actually your customer?", "Who are your most valuable customers?", "What is the best way to acquire new customers"?, "Why do your customers leave you?", "What product/service should be offered to what customer?", "How can you sell more to your customers?", "How do you measure customer value?", often provoked intense (if not fierce) discussions with answers not always readily available and uniformly agreed upon by business practitioners across different departments. This book tries to answer exactly these questions using data-driven and analytical techniques and insights. More specifically, we try to provide a clear and to-the-point guide of how to define, quantify, model and deploy Customer Lifetime Value (CLV) models from various perspectives by first identifying and defining the key problems and then offering ways to tackle them using carefully selected data combined with state of the art analytics.

What Makes This Book Different?

This book is based on the unique complimentary experience of both authors having worked in (customer) analytics for more than 30 years combined, both in industry and academia. More specifically, both authors have co-authored more than 300 scientific publications and various books on the topics covered in this book and have worked with firms in different industries, including (online) retailers, financial institutions, manufacturing firms, insurance providers, NFP organisations, governments, etc. all over the globe estimating, validating, de-

ploying, governing and monitoring analytical Customer Lifetime Value models.

The authors wrote this book with a very pragmatic focus in mind. In other words, the concepts, methods and techniques covered try to balance out a mix between sound and solid proven theories on the one hand and practical applicability on the other hand. Hence, we deliberately don't focus on overly complex techniques based on heavy mathematical underpinnings with limited to zero added business-value.

The book also comes with a web site *www.clvbook.com* which features various data sets and R/Python code to illustrate the techniques and approaches discussed. This will allow practitioners to efficiently and swiftly try out what they have learned in their own business areas.

Who This Book Is For?

This book is for anyone who is curious to know more about modeling Customer Lifetime Value or intrigued to make his/her organisation fully customer-centric. A first target audience consists of business practitioners across all industries where customers are considered a key asset. Example reader profiles are marketeers, customer/brand/channel/relationship managers, marketing and data scientists. Also consultants may find our book useful to help their clients in their CLV efforts. C-level executives (e.g., Chief Executive Officers, Chief

STRUCTURE OF THE BOOK

Marketing Officers, Chief Analytics Officers, Chief Data Officers) as well as tactical and operational levels may benefit from reading this book to be more closely aligned with the data scientists, marketing modelers and analysts directly working on modeling CLV.

Secondly, the book can also used as a handbook by academics teaching courses on the topic, both undergraduate as well as postgraduate. It features various handy add-ons such as multiple choice questions at the end of each chapter, worked out case studies in Python and R, references to background literature and links to ON-LINE courses which can help facilitate the learning experience.

For those who are just starting to find their way around in analytics, we are convinced that this book can be an important guide to help you use it for CLV modeling, but would advice to first briefly refresh your knowledge on descriptive statistics (e.g., mean, standard deviation, confidence intervals, hypothesis testing) so as to maximize your reading experience.

Structure Of The Book

The book starts by providing a basic introduction to CLV modeling where the key concepts are defined and illustrated with some examples. In Chapter 2, we review and refresh various supervised and unsupervised analytical techniques that will be used extensively in later chapters. Chapter 3 discusses the

well-known Recency, Frequency and Monetary (RFM) framework as the layman's approach to CLV analysis. The RFM features introduced will be used extensively in later chapters as predictors for various CLV related modeling exercises. Chapter 4 elaborates on customer acquisition by zooming in on lookalike modeling and prospect- and lead conversion modeling. Chapter 5 builds further upon these ideas by reviewing how to set up smart marketing campaigns so as to maximize their response rates and turn leads into customers. Chapter 6 learns how to prevent your customers from churning or leaving your firm. Markov chains are covered in chapter 7 as an interesting tool to see how customers migrate between their different CLV states. Chapter 8 discusses customer journey analysis to better understand how your customers interact with your firm and by means of what channels and/or touchpoints. Chapter 9 elaborates on probabilistic models such as the Pareto/NBD submodel to predict the future number of transactions of a customer and the Gamma/Gamma submodel to estimate the average profit or monetary value per transaction, both essential elements to estimate the CLV. Chapter 10 discusses market segmentation by reviewing both customer heterogeneity and profiling. Recommender systems are extensively reviewed in chapter 11. The book concludes with chapter 12 by covering the deployment, governance and monitoring of CLV models.

We recommend going through the book from start to finish if this is your first reading, and refer back to specific sections later on to get a refresher on specific contents. Since we be-

ADDITIONAL LEARNING MATERIAL

lieve the topic of CLV modeling to be intricate enough already, we have deliberately kept its structure simple and to the point: every chapter is organized in a series of sections with subsections only sparingly being used. We don't overcomplicate the book with lots of (complex) formulas, call-out boxes, etc. We do, however, provide plenty of references which should offer lots of further info and extra reading material to those looking to expand their knowledge.

Additional Learning Material

As already mentioned, the book comes with the following website: www.CLVbook.com which features various case studies in Python and R to complement the textual material. Each chapter concludes with a set of multiple choice questions to assist and verify the reader's assimilation of the material. Extensive referencing to background literature is provided to help those readers who are interested in finding out more about a specific topic discussed. The bibliography features more than 150 citations.

Furthermore, as another interesting add-on to the learning experience, we are happy to refer to our following BlueCourses courses (www.bluecourses.com):

- Customer Lifetime Value Modeling
- Recommender Systems
- Machine Learning Essentials

- · Deep Learning
- Text Analytics

Each of the above courses features several hours of prerecorded videos, Python/R examples, real-life case studies, multiple choice questions, and various references to background literature. The courses can also be taught on-site if interested (please send us an e-mail in case).

Front Cover

The front cover was shot at Bar Louis https://www.barlouis.be/ where the idea of the book originated. Bar Louis is a very cozy, trendy bar in the heart of Leuven (Belgium) serving an excellent food and drinks menu run by a passionate and inspiring lady of the house, miss Katelijne Vandenbroeck, whom we are very thankful for this opportunity. Bart is having a Tripel Karmeliet and Arno an Omer, both their favourite (Belgian!) beers. Looking forward to seeing you there!

About The Authors

Professor Bart Baesens is a professor of Big Data & Analytics at KU Leuven (Belgium), and a lecturer at the University of Southampton (United Kingdom). He has done extensive research on big data & analytics, credit risk modeling, fraud detection, and marketing analytics. He coauthored more than 300 scientific papers

and ten books. Bart received the OR Society's Goodeve medal for best JORS paper in 2016 and the EURO 2014 and EURO 2017 award for best EJOR paper. His research is summarized at *dataminingapps.com*. He also regularly tutors, advises and provides consulting support to international firms with respect to their analytics and credit risk management strategy. Bart is listed in Stanford University's new Database of Top Scientists in the World. He was also named one of the World's top educators in Data Science by CDO magazine in 2021. He is also co-founder of BlueCourses (*www.bluecourses.com*), an online training platform providing courses on Machine Learning, Fraud Analytics, Credit Risk Modeling, Deep Learning, etc.

Professor Arno De Caigny is professor of business analytics at the triple crown accredited IÉSEG School of Management, Catholic university of Lille and member of the research laboratory LEM (UMR CNRS 9221). Before starting his academic career, he worked as an analytical consultant for

Deloitte. His research focuses on improving decision-making in companies through the use of data and quantitative methods. He has vast experience in applying machine learning to solve challenges in the broad marketing domain. He has led numerous projects in various industries, such as financial services, retailing, software, that required customer lifetime value modeling to solve business problems. He has published in internationally renowned and peer-reviewed journals such as European Journal of Operational Research, Decision Support Systems, International Journal of Forecasting and Industrial Marketing Management. He also developed a custom machine learning algorithm that is both comprehensible and accurate, to improve customer retention decision making. This work is one of the top 10 most cited papers in European Journal of Operational Research since 2018.

We hope you enjoy reading through this book as much as we enjoyed writing it. We're always happy to hear feedback and remarks from our readers and can be contacted by email at Bart.Baesens@kuleuven.be and A.De-Caigny@ieseg.fr.

ABOUT THE AUTHORS

Chapter 1

Introduction to Customer Lifetime Value

Overview

In this chapter, we set the stage for the remainder of the book. We first relate customer value to firm value and define the customer lifetime value (CLV). We then extensively zoom in on the various revenue and cost components of the CLV. A next section elaborates on customer equity and its relation to CLV. This is followed by reviewing some CLV modeling examples taken from the industry. We discuss various marketing actions that can be undertaken to optimize the CLV. Finally, the chapter concludes by discussing various approaches to model CLV.

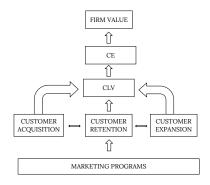


Figure 1.1: Customer value versus firm value.

Setting The Stage

Milton Friedman introduced the age of shareholder primacy, which basically implied that a key reason that companies exist is to maximize shareholder value ¹. This can be done by carefully managing a firm's key assets which are, amongst others, its infrastructure, buildings and equipment, its inventory, its know-how, its employees and its customers. Unfortunately, nowadays, too many companies focus on their physical and financial assets thereby under-prioritizing two of their other key assets: their customers and employees! In this book, we focus on the customers, and how to appropriately value them across their entire lifetime and relationship with the firm.

In their 2006 Journal of Service Research paper, Gupta et al

 $^{^1\}mbox{https://www.nytimes.com/1970/09/13/archives/a-friedman-doctrine-the-social-responsibility-of-business-is-to.html}$

CHAPTER 1. INTRODUCTION TO CLV

[71] already outlined the relationship between customer value and firm or shareholder value as you can see visualized in Figure 1.1. Marketing programs are typically being setup for customer acquisition, customer retention and customer expansion or deepening of customer relationships. All these directly impact the customer lifetime and as such the customer equity of the firm, which in turn influences firm or shareholder value. Put differently, to maximize firm value firms should invest in their number one asset: their customers!

To further reinforce this statement, the term customer capitalism was put forward by Roger Martin in 2010, then dean of the University of Toronto's Rotman School of Management [113]. The concept primarily boils down to putting your customers first. Too much short term profit and quarterly earnings pressure have a damaging effect on customer relationships and value. Think about cutting back on customer service and experience, minimizing customer call handling times, imposing unjustified and unnecessary customer fees and compromising product quality as examples. This is being further exacerbated by the fact that most modern day accounting standards (e.g., IFRS 9) and reporting rules do not include customer value at all. Luckily, some CEOs are starting to realize and successfully manage the connection between customer and firm value. Popular examples are: Amazon's Jeff Bezos, Costco's Jim Sinegal, and Vanguard's Jack Brennan. As Bezos puts it, customer focus is simply not enough, you have to be customer obsessed.

"The No 1 Thing that has made us successful by far

SETTING THE STAGE

is obsessive compulsive focus on the customer." (Jeff Bezos, CEO Amazon)

Vanguard was an early adopter of the Net Promotor Score (NPS) which essentially captures the response to the question ²: "How likely are you to recommend a product or service to a friend or colleague?". The question is answered on a scale from 0 to 10 where scores above 9 correspond to promotors with high customer value in terms of generating more sales and positive word-of-mouth whereas scores below 6 represent detractors or customers with low value and at risk of leaving the firm (also called churning). The NPS metric is now used by various firms world-wide to measure and manage customer relationships and value.

Using modern data-driven capabilities, customer health scores nowadays extend traditional NPS scores. NPS scores are still a vital part of customer health, but customer health scores also capture product usage information, elements of crossfunctional touch points such as billing or support, and even external review data [78]. Hence, customer health scores promise to serve as a lead indicator to gain a better sense of the customers' engagement. Firms start to sense the importance of their customer base as a source of value and invest in nurturing the relationship with their customers. New roles that focus on the customer, such as customer success managers are popping up. These customer success managers are customer facing, indirect sales roles that have as a primary objective to

²https://netpromoterscore.guru/vanguard-research-com

CHAPTER 1. INTRODUCTION TO CLV

engage customers to ensure value outcomes and ongoing successful use of the product [79]. Hence, they fulfill a crucial role in maximizing the long term value of the customer base.

To further illustrate some of our previous points we included three quotes from a recent Harvard Business Review contribution by Rob Markey [111].

"It would be irresponsible for any leader to ignore customer value as a proven source of profitable growth."

"Loyalty leaders grow revenues roughly 2.5 times as fast as their industry peers and deliver two to five times the shareholder returns over the next 10 years."

Definition

Customer Lifetime Value (CLV), often also referred to as Life-Time Value (LTV), was defined by Malthouse and Blattberg in 2005 as the present value of the expected benefits less the costs of initialising, maintaining and developing the customer relationship [109]. It can be calculated as:

$$CLV = \sum_{t=1}^{T} \frac{(R_t - C_t)s_t}{(1+d)^t}$$
 (1.1)

KEY PARAMETERS

The key elements are:

- the costs at time t: C_t
- the revenue at time t: R_t
- the probability customer is still alive at time t: s_t
- the discount rate (d)
- the time horizon (*T*)

Month	Revenue	Cost	Survival	$(R_t - C_t)s_t/(1+d)^t$
t	R_t	C_t	probability (s_t)	
1	150	5	0,94	135,22
2	100	10	0,92	81,50
3	120	5	0,88	98,82
4	100	0	0,84	81,37
5	130	10	0,82	94,57
6	140	5	0,74	95,25
7	80	15	0,7	43,04
8	100	10	0,68	57,43
9	120	10	0,66	67,59
10	90	20	0,6	38,79
11	100	0	0,55	50,40
12	130	10	0,5	54,55
			CLV	898,53

Table 1.1: Calculating CLV.

In Table 1.1, you can see an example calculation of the CLV. We calculated the CLV for a 12 month time period taking the weighted average cost of capital or WACC as the discount factor. Note that the yearly WACC was set at 10% which corresponds to a monthly WACC of 1%.

Key Parameters

Let's elaborate on each of the CLV key parameters into some more detail. First the time horizon, *T*. Theoretically, this should

CHAPTER 1. INTRODUCTION TO CLV

be infinity. Unfortunately, this is practically infeasible since it's simply impossible to predict that far in the future. Based on our business experience, we would suggest to set it to three or five years at maximum.

Next, we have the discount rate d. Theoretically, we don't know this one yet as we would have to wait until T. A difference also needs to be made between the monthly versus yearly discount rate. Remember the relationship $(1+d) = (1+m)^{12}$ with d the yearly discount rate and m the monthly discount rate. It is typically chosen according to the company's policy. A first and commonly used option is the Weighted Average Cost of Capital or WACC which is the rate that a company pays to all its security holders (e.g., shareholders and debt) to finance its assets. We have also seen some firms using the inflation as the discount rate. In case the short-term relationship is considered important, a high discount rate is chosen, such as 15% annually. In case a long-term relationship is considered important, a low discount rate is chosen, such as 5% annually. A higher discount rate typically implies a lower CLV since future cash flows are less worth now. Hence, it is recommended to be conservative when setting the discount factor.

The revenues, R_t , and costs, C_t , should incorporate both direct and indirect revenues and costs, if possible. Direct revenues are the revenues of directly interacting with the customer such as a product or service purchase. Examples of indirect revenues are word-of-mouth effects (assuming these are positive) or positive reviews posted by the customer on-line.

CUSTOMER EQUITY

Direct costs are the costs to serve a particular customer such as the costs that occur when selling a particular product or service to a customer (e.g., product costs, PayPal costs, delivery costs, etc). Indirect costs are the costs that relate to the various supporting activities as provided by business units such as customer service, IT, etc. Obviously, indirect revenues and costs are a lot harder to quantify that direct costs and revenues that's why we see many firms ignoring those in their CLV calculations. Do note that since R_t and C_t are measured for future timestamps, they need to be estimated themselves and as such can be the result of predictive analytical models.

Finally, we have the survival probability s_t . Remember, this represents the probability the customer is still alive at time t. Also this parameter varies in time depending upon how the customer relationship evolves. It is typically also estimated using survival analysis models [29, 92].

Customer Equity

We already briefly mentioned the term customer equity. First of all, this term has nothing to do with equity in the traditional sense of the word meaning 'ownership'. Essentially, customer equity can be defined as the sum of the customer lifetime values of all customers of the firm,

Customer Equity =
$$\sum_{i=1}^{n} CLV_i$$
, (1.2)

with n the number of customers.

When calculating customer equity, one commonly aggregates the CLV across all customers, all products, all channels, etc. Doing this will also allow to spot opportunities such as which customer, product or channel has higher CLV potential which can then be materialized by setting up the right marketing campaigns targeted at the right customer, product or channel.

Customer equity is sometimes also approached from three perspectives: value equity, which represents the customer's evaluation of the value of the product or service (e.g., what do I think about the newest Apple iPhone), brand equity which represents the customer's evaluation of the brand (e.g., how do I perceive Apple as a brand?) and retention equity, which represents the customer's probability to stay with the brand even when it's expensive (e.g., how likely am I to leave from Apple to Samsung?).

Popular examples of firms that have high customer equity are McDonalds, Apple and Facebook. Customers of these firms typically perceive their products to be of high value (value equity), choose the brand for a particular reason (brand equity) and are likely to stay with them and develop a long-lasting sustainable relationship (retention equity).

Customer equity essentially measures how much the firm is worth at a particular point in time as a result of the firm's customer management efforts. As mentioned earlier, it is however directly related to the shareholder value of the firm since a high

INDUSTRY ADOPTION

customer equity value is directly related to a higher profit and hence higher stock prices and/or dividends.

Industry Adoption

By means of CLV modeling, The Royal Bank of Canada (RBC) identified that medical students were high CLV customers³, evaluated over long periods of time. The bank therefore implemented a program to satisfy their needs early in their careers, as well as during the progression of their careers, with products such as credit cards, help with student loans, and loans to set up new practices. In the first year, RBC's market share in this segment boosted from 2 percent to 18 percent, and average sales were nearly four times higher than those to an average customer. The loyalty of these customers also was very high, which reduces the risk of churn. In summary, this segment represents very high CLV customers, and the firm's targeted acquisition, onboarding, and expansion strategies allowed it to manage those valuable customers as they migrated from being students, to setting up their medical practices, to achieving professional success.

According to research by CounterPoint, a global industry analysis firm headquartered in Asia, an Apple power iPhone user can generate a CLV of about US\$2,400 over a period of 30 months by subscribing to its continuously evolving portfolio of

 $^{^3 \}rm https://foster.uw.edu/wp-content/uploads/2017/03/MarketingStrategy Chapter 03-2.4.pptx$

CHAPTER 1. INTRODUCTION TO CLV

services ⁴. In fact, research has indicated that CLV increases about two to three times when a company switches to a subscription model ⁵. As an example Amazon prime customers who usually get free shipping and ad-free music streaming (see https://www.amazon.com/gp/prime) spend significantly more than non-prime customers. Similar multiples apply with other subscription based providers such as Netflix.

Though CLV should be a key instrument to any marketeer to manage customer relationships, a 2018 report by Criteo⁶, an on-line advertising company, examined the state of CLV adoption in UK marketing programs by surveying 100 marketers and 2,023 consumers across the UK. Rather astonishingly, it was found that only over a third (34%) were completely aware of the term and its connotations. Based on our recent dealings with firms, we fear that not much has changed since then.

Marketing Actions To Optimize CLV

Various marketing actions can be undertaken to optimize (i.e., increase or maintain) the CLV. A first example is a customer retention campaign which focuses on keeping possibly dissatisfied customers. As an example, consider a customer contacting

 $^{^4}$ https://www.counterpointresearch.com/apple-iphone-apple-watch-price-drop-strategic-masterstrok

⁵https://www.forbes.com/sites/forbesfinancecouncil/2021/02/22/the-sec ret-to-long-term-consumer-tech-success-subscription-pricing/?sh=3f9c0f0b 5883

⁶https://www.criteo.com/wp-content/uploads/2018/03/Criteo-UK-Commerce-Marketing-Forum.pdf

your service desk to file a complain about your products or service (e.g., expensive roaming tariffs or bad coverage for a Telco provider). This is a customer which is clearly at risk of leaving your firm (also called customer churning, customer defection, customer attrition), hence it may make sense to give him/her a coupon, a free upgrade or some other compensation. Past research has shown that the average customer is actually quite forgiving in the sense that if (s)he feels the dissatisfaction is heard and acted upon by the firm, (s)he will not leave and stay with the firm. We will come back to this more extensively in the chapter on churn prediction.

Another option is further deepening customer relationships by selling additional products or services to your existing customer portfolio using X-selling. The aim here is to change the intended purchase behavior of a customer using patterns learned from data. This can be done in three possible ways: upselling, cross-selling or down-selling. The idea of up-selling is to sell more of a given product, usually at the time of purchase. An example of this is if you order a lager beer (e.g., Stella Artois) and the waiter recommends an upscale, more expensive beer instead (e.g., a specialty Trappist beer such as Westmalle). Cross-selling aims at selling an additional product or service. For example, the waiter might also recommend some abbey cheese as it pairs well with a Westmalle. Finally, down-selling means selling less of a product or service in order to maintain a sustainable, long-lasting customer relationship. For example, if you had too many beers and order yet another one, the waiter

CHAPTER 1. INTRODUCTION TO CLV

might discourage you from doing so and recommend water instead. From a business perspective, it is important to understand which products are often purchased together, so as to make good recommendations. In fact, building good recommender systems is a research topic on its own with Netflix and Amazon being prominent examples spearheading this technology.

Customer acquisition aims at expanding your customer base by acquiring new customers. This can be done by setting up well-targeted marketing campaigns either off-line or on-line. Popular examples of off-line campaigns are sending out flyers, brochures, order catalogs or billboard advertising. Examples of on-line campaigns are banners (often served by Ad networks such as Google Adsense), e-mails (preferably solicited instead of SPAM), search engine marketing, and social media marketing (on e.g. Facebook, YouTube, Twitter, Instagram, etc).

Simplifying customer experiences is another interesting strategy to contemplate. Far too often, we have witnessed that the customer onboarding processes adopted by many (on-line or off-line) firms nowadays are too complex or red tapey which may create an adverse effect and turn a prospect into a non-interested party. One-click simple buying processes requiring only the strict minimum of information needed to complete the purchase are a highly recommended customer practice. Closely related to this is the payment processes adopted by firms. Far too often, to avoid fraud from happening, these processes involve various steps of authentication with the risk

of losing customers during the cumbersome process (requiring sometimes even different hardware devices to confirm your identity). It is however always recommended to properly and accurately offset the complexity of the payment process and the risk of losing customers against the risk of fraud with a simple payment process but less customers lost along the way.

Customer journey analysis is another key marketing tool that could come in handy to optimize your CLV. It basically illustrates the various activities, states or touchpoints and transactions that a customer can be in when buying a mortgage. Customer journey analysis can be used to get a clear and comprehensive picture of the overall process and highlight process deficiencies such as excessive processing times, deadlock situations, circular references, and unwanted customer leakage (due to incorrect web links, for example), among others. We discuss more about customer journey analysis in Chapter 8.

Nowadays customers may provide feedback about your products or services along various social media channels such as Twitter, Facebook, Instagram, etc. Continuously monitoring these streams using social media analytics tools can provide very useful insights into customer (dis)satisfaction which undoubtedly also affect your CLV. Note that this is also often referred to as social listening and can also highly contributed to creating customer intimacy as we discuss below. In fact, one pharmaceutical company we worked with, was doing this to monitor the side effects of the drugs it was selling on social media so as to get a holistic picture on its product usage.

CHAPTER 1. INTRODUCTION TO CLV

Finally, creating customer intimacy is another option. However, this is at the same time the most challenging strategy to pursue as it highly depends upon a customer's characteristics or behavior. The goal is to be intrusive but in a subtle and well-considered way so as to not create an unwanted disturbing experience to the customer. In fact, some customers (like us for example) don't like to be disturbed at all by their phone companies, utility providers, financial institutions etc. Other ones like to stay continuously updated about new deals and offerings such that they can rest assured they always have the best personalized deal. Distinguishing both groups of customers and serving them according to their needs is a key challenge to pursue customer intimacy. Developing highly personalized relationships with customers is a key building block towards customer intimacy.

Approaches To Model CLV

Various approaches can be adopted to model CLV. A first one is by creating a data set using historically observed CLV values for a representative group of customers as shown in Table 1.2. This data set can then be analysed using classical predictive analytical techniques such as linear regression, regression trees (e.g., CART) and/or (deep learning) neural networks. The performance of these can then be appropriately measured using, e.g., mean squared error (MSE), mean absolute deviation (MAD) or the Pearson correlation (our preferred method!) on an inde-

APPROACHES TO MODEL CLV

pendent hold-out test set hereby assuring no data leakage.

Name	Age	Marital Status	Income		CLV
Bart	65	Married 25,000		2,500	
Arno	49	Married 40,000			3,800
An	53	Single	60,000		5,000
Laura	50	Married	80,000		6,000
Sophie	44	Married	50,000		4,500
Victor	28	Single	30,000		2,800

Table 1.2: Example data set for CLV modeling.

However, note that perfectly quantifying the CLV is by no means a trivial exercise. No firm in the world will be capable to perfectly quantify all numbers (R_t, C_t, d, T, s_t) provided in the reference formula. Hence, many firms will resort to approximative approaches by for example:

- focusing on very short time horizons, e.g., up to 1 year
- calculating CLV on a product basis, e.g., at the level of an individual checking account
- only considering direct revenues and costs and ignoring indirect costs and benefits which are hard to quantify anyway
- ignoring the discounting factor
- working with average benefit and/or cost values instead of precise values
- defining CLV segments instead of precise CLV values (e.g., Platinum, Gold, Silver, Bronze)
- decomposing CLV in some of its core elements such as customer retention, customer acquisition, and customer journey analysis

CHAPTER 1. INTRODUCTION TO CLV

All these approximations should not be seen as a showstopper. In fact, in the majority of cases firms can do perfectly well with an ordinal ranking of their customers in terms of CLV instead of a well-calibrated CLV. More specifically, being able to rank your customers from high value to low value can already be very useful for deciding who to target with your marketing campaigns.

Closing Thoughts

In this chapter, we introduced the definition of CLV and discussed its various component. By now it should be clear that accurately quantifying CLV is not an easy exercise. Hence, in the following chapters, we gradually discuss all elements that constitute CLV modeling. We start with a refresher of basic analytical tools that are prerequisite to understand the more advanced chapters. Next, we cover topics that allow to grow the customer base by acquiring new customers, increase the value of the existing customer base through customer development techniques and retain more customers through customer retention modeling. After reading this book, you will be ready to put all this learning into practice.

Application In Python/R

The software example on www.CLVbook.com provides a simple illustration of the calculation of CLV. We advise the reader to try it out and then do some sensitivity analysis by playing with the revenues, costs, survival probabilities, discount factor and time horizon and evaluate the impact on the CLV.

Quiz

Question 1

Milton Friedman introduced the age of shareholder primacy, which basically implied that a key reason that companies exist is to

- (a) maximize shareholder value.
- (b) maximize customer value.

Question 2

To maximize firm value firms should invest in their number one asset:

- (a) their infrastructure and equipment.
- (b) their customers.
- (c) their inventory.
- (d) their know-how.

Question 3

Most modern day accounting standards and reporting rules

- (a) do include customer value.
- (b) do not include customer value.

Question 4

When calculating CLV, many firms set the time horizon T to

- (a) 1 year.
- (b) 3-5 years.
- (c) 10 years.
- (d) infinity.

Question 5

In case the short-term relationship is considered important when calculating CLV, it is recommended to set

- (a) a low discount factor.
- (b) a high discount factor.

Question 6

Which statement is CORRECT?

- (a) Customer equity can be defined as the sum of the customer lifetime values.
- (b) Customer lifetime value can be defined as the sum of the customer equity.

Question 7

Which actions can be undertaken to increase the CLV?

- (a) retaining existing customers.
- (b) deepening customer relationships.
- (c) acquiring new customers.

CHAPTER 1. INTRODUCTION TO CLV

- (d) simplifying customer experiences.
- (e) customer intimacy.
- (f) all of the above.

Bibliography

- [1] Hossein Abbasimehr, Setak Mostafa, and Javad Soroor. "A framework for identification of high-value customers by including social network based variables for churn prediction using neuro-fuzzy techniques." In: *International Journal of Production Research* 51 (Jan. 2012). DOI: 10.1080/00207543.2012.707342.
- [2] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. "Mining Association Rules Between Sets of Items in Large Databases, SIGMOD Conference." In: vol. 22. June 1993, pp. 207–. DOI: 10.1145/170036.170072.
- [3] Juliana Alvarez et al. "An Enriched Customer Journey Map: How to Construct and Visualize a Global Portrait of Both Lived and Perceived Users' Experiences?" In: Designs 4 (Aug. 2020), p. 29. DOI: 10.3390/designs4030029.
- [4] Eva Ascarza, Raghuram Iyengar, and Martin Schleicher.
 "The Perils of Proactive Churn Prevention Using Plan Recommendations: Evidence from a Field Experiment."

- In: Journal of Marketing Research 53.1 (2016), pp. 46–60. DOI: 10.1509/jmr.13.0483.
- [5] Adriano Augusto et al. "Automated Discovery of Process Models from Event Logs: Review and Benchmark." In: IEEE Transactions on Knowledge and Data Engineering PP (May 2017). DOI: 10.1109/TKDE.2018.2841877.
- [6] Aimée Backiel, Bart Baesens, and Gerda Claeskens. "Predicting time-to-chum of prepaid mobile telephone customers using social network analysis." In: Journal of the Operational Research Society 67 (Mar. 2016). DOI: 10. 1057/jors.2016.8.
- [7] Bart Baesens, Daniel Rösch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Oct. 2016. ISBN: 978-1119143987. DOI: 10.13140/RG.2.2.14675.17447.
- [8] Bart Baesens, Véronique Van Vlasselaer, and Wouter Verbeke. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection. Aug. 2015. ISBN: 9781119133124. DOI: 10.1002/9781119146841.
- [9] Bart Baesens et al. "Bayesian neural network for repeat purchase modelling in direct marketing." In: European Journal of Operational Research 138 (Apr. 2002), pp. 191–211. DOI: 10.1016/S0377-2217(01)00129-1.
- [10] Bart Baesens et al. "Benchmarking state-of-the-art classification algorithms for credit scoring." In: *Journal*

- of the Operational Research Society 54 (June 2003). DOI: 10.1057/palgrave.jors.2601545.
- [11] Bart Baesens et al. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation." In: Management Science 49 (Mar. 2003), pp. 312–329. DOI: 10.1287/mnsc.49.3.312.12739.
- [12] P.V.(Sundar) Balakrishnan et al. "Comparative performance of the FSCL neural net and K-means algorithm for market segmentation." In: European Journal of Operational Research 93.2 (1996). Neural Networks and Operations Research/Management Science, pp. 346–357. ISSN: 0377-2217. DOI: https://doi.org/10.1016/0377-2217(96)00046-X.
- [13] Oren Barkan and Noam Koenigstein. "ITEM2VEC: Neural item embedding for collaborative filtering." In: Sept. 2016, pp. 1–6. DOI: 10.1109/MLSP.2016.7738886.
- [14] Gaël Bernard and Periklis Andritsos. "A Process Mining Based Model for Customer Journey Mapping." In: International Conference on Advanced Information Systems Engineering. June 2017.
- [15] Gaël Bernard and Periklis Andritsos. "Discovering Customer Journeys from Evidence: A Genetic Approach Inspired by Process Mining." In: May 2019, pp. 36–47. ISBN: 978-3-030-21296-4. DOI: 10.1007/978-3-030-21297-1_4.
- [16] Derrick S. Boone and Michelle Roehm. "Retail segmentation using artificial neural networks." In: *International*

- Journal of Research in Marketing 19.3 (2002). Market Segmentation, pp. 287–301. ISSN: 0167-8116. DOI: https://doi.org/10.1016/S0167-8116(02)00080-0.
- [17] George Box. "Science and statistics." In: Journal of the American Statistical Association 71.356 (1976), pp. 312–329.
- [18] Leo Breiman. "Bagging Predictors." In: Machine Learning 24 (Aug. 1996), pp. 123–140. DOI: 10.1007/BF00058655.
- [19] Leo Breiman. "Random Forests." In: Machine Learning 45 (Jan. 2001), pp. 5–32. DOI: 10.1023/A:1018054314350.
- [20] Seppe vanden Broucke and Bart Baesens. Practical Web Scraping for Data Science. Jan. 2018. ISBN: 978-1-4842-3581-2. DOI: 10.1007/978-1-4842-3582-9.
- [21] Seppe vanden Broucke and Jochen Weerdt. "Fodina: A robust and flexible heuristic process discovery technique." In: Decision Support Systems 100 (Apr. 2017). DOI: 10.1016/j.dss.2017.04.005.
- [22] Joos C. A. M. Buijs, Rick F. M. Bergmans, and Rachied El Hasnaoui. "Customer journey analysis at a financial services provider using self service and data hub concepts." In: BPM. 2019.
- [23] Tadeusz Caliński and Harabasz JA. "A Dendrite Method for Cluster Analysis." In: Communications in Statistics -Theory and Methods 3 (Jan. 1974), pp. 1–27. DOI: 10.1080/ 03610927408827101.

- [24] Josep Carmona et al. Conformance Checking Relating Processes and Models. Springer, 2018. ISBN: 978-3-319-99413-0. DOI: 10.1007/978-3-319-99414-7.
- [25] Tianqi Chen and Carlos Guestrin. "XGBoost: A Scalable Tree Boosting System." In: Aug. 2016, pp. 785–794. DOI: 10.1145/2939672.2939785.
- [26] Zhen-Yu Chen, Peng Shu, and Minghe Sun. "A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data." In: European Journal of Operational Research 223 (Dec. 2012), pp. 461–472. DOI: 10.1016/j.ejor.2012.06.040.
- [27] Paul-Alexandru Chirita, Wolfgang Nejdl, and Cristian Zamfir. "Preventing shilling attacks in online recommender systems." In: Jan. 2005, pp. 67–74. DOI: 10.1145/ 1097047.1097061.
- [28] Kristof Coussement et al. "Predicting student dropout in subscription-based online learning environments: The beneficial impact of the logit leaf model." In: Decision Support Systems 135 (2020), p. 113325. ISSN: 0167-9236. DOI: https://doi.org/10.1016/j.dss.2020.113325.
- [29] D.R. Cox and D. Oakes. Analysis of Survival Data. Feb. 2018, pp. 1–201. ISBN: 9781315137438. DOI: 10.1201/9781315137438.
- [30] Jeroen D'Haen, Dirk Van den Poel, and Dirk Thorleuchter. "Predicting customer profitability during acquisition: Finding the optimal combination of data source and data mining technique." In: Expert Systems

- with Applications 40 (May 2013), pp. 2007–2012. DOI: 10. 1016/j.eswa.2012.10.023.
- [31] Jeroen D'Haen et al. "Integrating Expert Knowledge and Multilingual Web Crawling Data in a Lead Qualification System." In: Decision Support Systems 82 (Jan. 2016). DOI: 10.1016/j.dss.2015.12.002.
- [32] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. "Are We Really Making Much Progress? A Worrying Analysis of Recent Neural Recommendation Approaches." In: *Proceedings of the 13th ACM Conference on Recommender Systems*. RecSys '19. Copenhagen, Denmark: Association for Computing Machinery, 2019, pp. 101–109. ISBN: 9781450362436. DOI: 10.1145/3298689. 3347058.
- [33] Koustuv Dasgupta et al. "Social ties and their relevance to churn in mobile telecom networks." In: Jan. 2008, pp. 668–677. DOI: 10.1145/1353343.1353424.
- [34] DataReportal. Digital 2022 April Global Statshot. URL: https://datareportal.com/reports/digital-2022-april-global-statshot. (accessed: 07.07.2022, page:123).
- [35] DataReportal. Digital 2022 April Global Statshot. URL: https://datareportal.com/reports/digital-2022-april-global-statshot. (accessed: 07.07.2022, page:104).
- [36] DataReportal. Digital 2022 Global Overview Report. URL: https://datareportal.com/reports/digital-2022-global-overview-report. (accessed: 07.07.2022, page:87).

- [37] Koen De Bock and Dirk Van den Poel. "Predicting Website Audience Demographics for Web Advertising Targeting Using Multi-Website Clickstream Data." In: Ghent University, Faculty of Economics and Business Administration, Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 98 (Jan. 2009). DOI: 10.3233/FI-2010-216.
- [38] Koen De Bock and Dirk Van den Poel. "Reconciling performance and interpretability in customer churn prediction using ensemble learning based on generalized additive models." In: Expert Systems with Applications 39 (June 2012), pp. 6816–6826. DOI: 10.1016/j.eswa.2012.01. 014.
- [39] Koen W. De Bock and Arno De Caigny. "Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling." In: Decision Support Systems 150 (2021). Interpretable Data Science For Decision Making, p. 113523. ISSN: 0167-9236. DOI: https://doi.org/10.1016/j.dss.2021.113523.
- [40] Arno De Caigny, Kristof Coussement, and Koen W. De Bock. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees." In: European Journal of Operational Research 269.2 (2018), pp. 760–772. ISSN: 0377-2217. DOI: https://doi.org/10.1016/j.ejor.2018.02.009.
- [41] Arno De Caigny, Kristof Coussement, and Koen W. De Bock. "Leveraging fine-grained transaction data for cus-

- tomer life event predictions." In: Decision Support Systems 130 (2020), p. 113232. ISSN: 0167-9236. DOI: https://doi.org/10.1016/j.dss.2019.113232.
- [42] Arno De Caigny, Kristof Coussement, and Koen W. De Bock. "Leveraging fine-grained transaction data for customer life event predictions." In: Decision Support Systems 130 (2020), p. 113232. ISSN: 0167-9236. DOI: https://doi.org/10.1016/j.dss.2019.113232.
- [43] Arno De Caigny et al. "Incorporating textual information in customer churn prediction models based on a convolutional neural network." In: International Journal of Forecasting 36 (Aug. 2019). DOI: 10.1016/j.ijforecast.2019. 03.029.
- [44] Arno De Caigny et al. "Uplift modeling and its implications for B2B customer churn prediction: A segmentation-based modeling approach." In: Industrial Marketing Management 99 (2021), pp. 28–39. ISSN: 0019-8501. DOI: https://doi.org/10.1016/j.indmarman. 2021.10.001.
- [45] Floris Devriendt, Jeroen Berrevoets, and Wouter Verbeke. "Why you should stop predicting customer churn and start using uplift models." In: *Information Sciences* 548 (2021), pp. 497–515. ISSN: 0020-0255. DOI: https://doi.org/10.1016/j.ins.2019.12.075.
- [46] Chiara Di Francescomarino et al. "Predictive Process Monitoring Methods: Which One Suits Me Best?" In: (Apr. 2018).

- [47] Eustache Diemert et al. "A Large Scale Benchmark for Uplift Modeling." In: KDD. London, United Kingdom, 2018. DOI: 10.1145/nnnnnnnnnnnnnnnnn.
- [48] Brendan Andrew Duncan and Charles Peter Elkan. "Probabilistic Modeling of a Sales Funnel to Prioritize Leads." In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD '15. Sydney, NSW, Australia: Association for Computing Machinery, 2015, pp. 1751–1758. ISBN: 9781450336642. DOI: 10.1145/2783258.2788578.
- [49] J.C. Dunn. "Well-Separated Clusters and Optimal Fuzzy Partitions." In: Cybernetics and Systems 4 (Apr. 1974), pp. 95–104. DOI: 10.1080/01969727408546059.
- [50] Peter Fader and Bruce Hardie. "A Note on Deriving the Pareto/NBD Model and Related Expressions." In: (Jan. 2005).
- [51] Peter Fader, Bruce Hardie, and Ka Lee. ""Counting Your Customers" the Easy Way: An Alternative to the Pareto/NBD Model." In: Marketing Science 24 (May 2005), pp. 275–284. DOI: 10.1287/mksc.1040.0098.
- [52] Peter Fader, Bruce Hardie, and Ka Lee. "RFM and CLV: Using iso-value curves for customer base analysis." In: Journal of Marketing Research American Marketing Association ISSN XLII (Dec. 2005), pp. 415–430. DOI: 10.1509/jmkr.2005.42.4.415.
- [53] M.A.T. Figueiredo and A.K. Jain. "Unsupervised learning of finite mixture models." In: IEEE *Transactions on*

- Pattern Analysis and Machine Intelligence 24.3 (2002), pp. 381–396. DOI: 10.1109/34.990138.
- [54] Martin Fixman et al. "A Bayesian Approach to Income Inference in a Communication Network." In: Aug. 2016, pp. 579–582. DOI: 10.1109/ASONAM.2016.7752294.
- [55] Ronald Edward Frank, William F. Massey, and Yoram Wind. Market segmentation. Jan. 1972. ISBN: 978-0135575796.
- [56] Yoav Freund and Robert Schapire. "A Short Introduction to Boosting." In: Journal of Japanese Society for Artificial Intelligence 14 (Oct. 1999), pp. 771–780.
- [57] Nicholas Frosst and Geoffrey Hinton. "Distilling a neural network into a soft decision tree." In: *arXiv preprint* arXiv:1711.09784 (2017).
- [58] Bernard Gaël. "Process Mining-Based Customer Journey Analytics." PhD thesis. Faculté des Hautes Études Commerciales de l'Université de Lausanne, 2020.
- [59] Timnit Gebru et al. "Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States." In: Proceedings of the National Academy of Sciences 114 (Nov. 2017), p. 201700035. DOI: 10.1073/pnas.1700035114.
- [60] Stijn Geuens, Kristof Coussement, and Koen De Bock. "A framework for configuring collaborative filtering-based recommendations derived from purchase data." In: European Journal of Operational Research 265 (July 2017). DOI: 10.1016/j.ejor.2017.07.005.

- [61] Barbara Giamanco and Kent Gregoire. "Tweet Me, Friend Me, Make Me Buy." In: Harvard business review 90 (July 2012), pp. 88-+.
- [62] Nicolas Glady, Bart Baesens, and Christophe Croux. "A modified Pareto/NBD approach for predicting customer lifetime value." In: Katholieke Universiteit Leuven, Open Access publications from Katholieke Universiteit Leuven 36 (Jan. 2007). DOI: 10.1016/j.eswa.2007.12.049.
- [63] Nicolas Glady, Bart Baesens, and Christophe Croux. "Modeling Churn Using Customer Lifetime Value." In: European Journal of Operational Research 197 (Aug. 2009), pp. 402–411. DOI: 10.1016/j.ejor.2008.06.027.
- [64] Sharad Goel and Daniel Goldstein. "Predicting Individual Behavior with Social Networks." In: Marketing Science 33 (Jan. 2014). DOI: 10.1287/mksc.2013.0817.
- [65] Leo Goodman and William Kruskal. "Measures of Association for Cross Classifications. II: Further Discussion and References." In: Journal of The American Statistical Association 54 (Mar. 1959), pp. 123–163. DOI: 10.1080/01621459.1959.10501503.
- [66] Aditya Grover and Jure Leskovec. "node2vec: Scalable Feature Learning for Networks." In: vol. 2016. July 2016, pp. 855–864. DOI: 10.1145/2939672.2939754.
- [67] Leo Guelman, Montserrat Guillén, and Ana M. Pérez-Marín. "A decision support framework to implement optimal personalized marketing interventions." In: Deci-

- sion Support Systems 72 (2015), pp. 24–32. ISSN: 0167–9236. DOI: https://doi.org/10.1016/j.dss.2015.01.010.
- [68] Björn Gunnarsson et al. "Deep Learning for Credit Scoring: Do or Don't?" In: European Journal of Operational Research 295 (Mar. 2021). DOI: 10.1016/j.ejor.2021.03.006.
- [69] Björn Rafn Gunnarsson et al. "Deep learning for credit scoring: Do or don't?" In: European Journal of Operational Research 295.1 (2021), pp. 292–305. ISSN: 0377–2217. DOI: https://doi.org/10.1016/j.ejor.2021.03.006.
- [70] Christian Günther and Wil Aalst. "Fuzzy Mining Adaptive Process Simplification Based on Multi-perspective Metrics." In: vol. 4714. Sept. 2007, pp. 328–343. ISBN: 978-3-540-75182-3. DOI: 10.1007/978-3-540-75183-0_24.
- [71] Sunil Gupta et al. "Modeling Customer Lifetime Value."In: Journal of Service Research 9 (Nov. 2006), pp. 139–155.DOI: 10.1177/1094670506293810.
- [72] Evert de Haan and Elena Menichelli. "The Incremental Value of Unstructured Data in Predicting Customer Churn." In: Marketing Science Institute Working Series Paper 2020 (Aug. 2019).
- [73] Ragnhild Halvorsrud, Knut Kvale, and Asbjørn Følstad. "Improving service quality through customer journey analysis." In: Journal of Service Theory and Practice 26 (Nov. 2016), pp. 840–867. DOI: 10.1108/JSTP-05-2015-0111.

- [74] Behram Hansotia and Paul Wang. "Analytical Challenges in Customer Acquisition." In: Journal of Direct Marketing 11 (Mar. 1999), pp. 7–19. DOI: 10.1002/(SICI)1522-7138(199721)11:2<7::AID-DIR3>3.0.CO;2-V.
- [75] Jon Herlocker et al. "An Algorithmic Framework for Performing Collaborative Filtering." In: ACM SIGIR Forum 51 (Aug. 2017), pp. 227–234. DOI: 10.1145/3130348.3130372.
- [76] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. "Distilling the Knowledge in a Neural Network." In: NIPS Deep Learning and Representation Learning Workshop. 2015. URL: http://arxiv.org/abs/1503.02531.
- [77] R.N. Hiscot. "Chi-square tests for markov chain analysis." In: Mathematical Geology 13 (1981), pp. 69–80.
- [78] Bryan Hochstein et al. "An Industry/Academic Perspective on Customer Success Management." In: Journal of Service Research 23.1 (2020), pp. 3–7. DOI: 10 . 1177 / 1094670519896422.
- [79] Bryan Hochstein et al. "Proactive Value Co-Creation via Structural Ambidexterity: Customer Success Management and the Modularization of Frontline Roles." In: Journal of Service Research 24.4 (2021), pp. 601–621. DOI: 10.1177/1094670521997565.
- [80] Arthur E. Hoerl and Robert W. Kennard. "Ridge regression: application to nonorthogonal problems." In: *Technometrics* 12 (1970), pp. 69–82.

- [81] J J Hopfield. "Neural networks and physical systems with emergent collective computational abilities." In: Proceedings of the National Academy of Sciences 79.8 (1982), pp. 2554–2558. DOI: 10.1073/pnas.79.8.2554. eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.79.8.2554.
- [82] Sebastiaan Höppner et al. "Profit Driven Decision Trees for Churn Prediction." In: European Journal of Operational Research 284 (Dec. 2017). DOI: 10.1016/j.ejor.2018. 11.072.
- [83] Bingquan Huang, Tahar Kechadi, and Brian Buckley. "Customer churn prediction in telecommunications." In: Expert Systems with Applications: An International Journal 39 (Jan. 2012), pp. 1414–1425. DOI: 10.1016/j.eswa.2011. 08.024.
- [84] Zan Huang, Hsiu-chin Chen, and Daniel Dajun Zeng. "Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering." In: ACM *Trans. Inf. Syst.* 22 (Jan. 2004), pp. 116–142. DOI: 10.1145/963770.963775.
- [85] Cullinan G. J. "Picking them by their Batting Averages' Recency Frequency Monetary Method of Controlling Circulation." In: Manual Release 2103, NY: Direct Mail/–Marketing Association (1977).
- [86] Dietmar Jannach et al. "Recommender Systems: An Introduction." In: Recommender Systems: An Introduction (Jan. 2010). DOI: 10.1017/CBO9780511763113.

- [87] Kathleen Kane, Victor Lo, and Jane Zheng. "Mining for the truly responsive customers and prospects using true-lift modeling: Comparison of new and existing methods." In: *Journal of Marketing Analytics* 2 (Dec. 2014). DOI: 10.1057/jma.2014.18.
- [88] Maurits Kaptein and Edwin van den Heuvel. "Random Variables and Distributions." In: Statistics for Data Scientists: An Introduction to Probability, Statistics, and Data Analysis. Cham: Springer International Publishing, 2022, pp. 103–140. ISBN: 978-3-030-10531-0. DOI: 10.1007/978-3-030-10531-0_4. URL: https://doi.org/10.1007/978-3-030-10531-0_4.
- [89] Leonard Kaufman and Peter Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. Sept. 2009. ISBN: 9780470317488.
- [90] M. G. Kendall. "A New Measure of Rank Correlation." In: Biometrika 30.1-2 (June 1938), pp. 81-93. ISSN: 0006-3444. DOI: 10.1093/biomet/30.1-2.81.
- [91] Maurice Kendall and Jean D. Gibbons. *Rank Correlation Methods*. 5th ed. A Charles Griffin Title, Sept. 1990.
- [92] David G. Kleinbaum and Mitchel Klein. Survival Analysis:
 A Self-Learning Text. Jan. 2005. ISBN: 978-0-387-23918 7. DOI: 10.1007/0-387-29150-4.
- [93] Teuvo Kohonen. "The Basic SOM." In: Self-Organizing Maps. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 105–176. ISBN: 978-3-642-56927-2. DOI: 10.

- 1007/978-3-642-56927-2_3. URL: https://doi.org/10.1007/978-3-642-56927-2_3.
- [94] Teuvo Kohonen. "The self-organizing map." In: Neuro-computing 21.1 (1998), pp. 1–6. ISSN: 0925-2312. DOI: https://doi.org/10.1016/S0925-2312(98)00030-7.
- [95] Michal Kosinski, David Stillwell, and Thore Graepel. "Private traits and attributes are predictable from digital records of human behavior." In: Proceedings of the National Academy of Sciences of the United States of America 110 (Mar. 2013). DOI: 10.1073/pnas.1218772110.
- [96] A.G. Lafley and Ram Charan. The Game-Changer: How You Can Drive Revenue and Profit Growth with Innovation. 2008. ISBN: 978-0307381736.
- [97] Yi-ting Lai et al. "Direct Marketing When There Are Voluntary Buyers." In: Sixth International Conference on Data Mining (ICDM'06). 2006, pp. 922–927. DOI: 10.1109/ICDM.2006.54.
- [98] Sander Leemans, Dirk Fahland, and Wil Aalst. "Discovering Block-Structured Process Models from Event Logs A Constructive Approach." In: Jan. 2013, pp. 311–329.
 ISBN: 978-3-642-38696-1. DOI: 10.1007/978-3-642-38697-8_17.
- [99] Daniel Lemire and Anna Maclachlan. "Slope One Predictors for Online Rating-Based Collaborative Filtering." In: Proceedings of the 2005 SIAM International Conference on Data Mining, SDM 2005 5 (Feb. 2007). DOI: 10.1137/1. 9781611972757.43.

- [100] Katherine Lemon and Peter Verhoef. "Understanding Customer Experience Throughout the Customer Journey." In: Journal of Marketing 80 (June 2016). DOI: 10. 1509/jm.15.0420.
- [101] Stefan Lessmann et al. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research." In: European Journal of Operational Research (doi:10.1016/j.ejor.2015.05.030) (May 2015). DOI: 10.1016/j.ejor.2015.05.030.
- [102] Elen Lima, Christophe Mues, and Bart Baesens. "Domain knowledge integration in data mining using decision tables: Case studies in churn prediction." In: *Journal of the Operational Research Society* 60 (Aug. 2009), pp. 1096–1106. DOI: 10.1057/jors.2008.161.
- [103] Elen Lima, Christophe Mues, and Bart Baesens. "Monitoring and backtesting churn models." In: Expert Systems with Applications 38 (Jan. 2011), pp. 975–982. DOI: 10.1016/j.eswa.2010.07.091.
- [104] Greg Linden, B. Smith, and J. York. "Linden G, Smith B and York J: 'Amazon.com recommendations: item-to-item collaborative filtering', Internet Comput. IEEE, , 7." In: Internet Computing, IEEE 7 (Feb. 2003), pp. 76–80. DOI: 10.1109/MIC.2003.1167344.
- [105] Jasmien Lismont et al. "Predicting Interpurchase Time in a Retail Environment using Customer-Product Networks: An Empirical Study and Evaluation." In: Expert

- Systems with Applications 104 (Aug. 2018), pp. 22–32. DOI: 10.1016/j.eswa.2018.03.016.
- [106] Thomas Lix, Paul Berger, and Thomas Magliozzi. "New customer acquisition: Prospecting models and the use of commercially available external data." In: *Journal of Direct Marketing* 9 (Oct. 2006), pp. 8–18. DOI: 10.1002/dir.4000090403.
- [107] Victor Lo. "The True Lift Model A Novel Data Mining Approach to Response Modeling in Database Marketing." In: SIGKDD Explorations 4 (Jan. 2002), pp. 78–86.
- [108] Sebastián Maldonado, Julio López, and Carla Vairetti. "Profit-based churn prediction based on Minimax Probability Machines." In: European Journal of Operational Research 284.1 (2020), pp. 273–284. ISSN: 0377-2217. DOI: https://doi.org/10.1016/j.ejor.2019.12.007.
- [109] Edward Malthouse and Robert Blattberg. "Can we predict customer lifetime value?" In: Journal of Interactive Marketing 19 (Dec. 2005), pp. 2–16. DOI: 10.1002/dir. 20027.
- [110] Paul Mangiameli, Shaw K. Chen, and David West. "A comparison of SOM neural network and hierarchical clustering methods." In: European Journal of Operational Research 93.2 (1996). Neural Networks and Operations Research/Management Science, pp. 402–417. ISSN: 0377-2217. DOI: https://doi.org/10.1016/0377-2217(96)00038-0.

- [111] Rob Markey. "Are You Undervaluing Your Customers?" In: Harvard Business Review January-February (2020).
- [112] Greg Marshall et al. "Revolution in Sales: The Impact of Social Media and Related Technology on the Selling Environment." In: The Journal of Personal Selling and Sales Management 32 (July 2012), pp. 349–363. DOI: 10.2307/ 23483286.
- [113] Roger Martin. "The Age of Customer Capitalism." In: Harvard Business Review January-February (2010).
- [114] Daniel McCarthy and Elliot Oblander. "Scalable Data Fusion with Selection Correction: An Application to Customer Base Analysis." In: Marketing Science 40 (Feb. 2021). DOI: 10.1287/mksc.2020.1259.
- [115] Daniel M McCarthy et al. "How to value a company by analyzing its customers." In: Harvard Business Review 91 (2020), pp. 51–55.
- [116] Matthijs Meire, Michel Ballings, and Dirk Van den Poel. "The added value of social media data in B2B customer acquisition systems: A real-life experiment." In: Decision Support Systems 104 (Oct. 2017). DOI: 10.1016/j.dss.2017. 09.010.
- [117] Nina Michaelidou, Nikoletta Siamagka, and George Christodoulides. "Usage, Barriers and Measurement of Social Media Marketing: An Exploratory Investigation of Small and Medium B2B Brands." In: Industrial Marketing Management IND MARKET MANAG 40 (Oct. 2011). DOI: 10.1016/j.indmarman.2011.09.009.

- [118] J Miglautsch. "Thoughts on RFM scoring." In: The Journal of Database Marketing 8 (Aug. 2000), pp. 67–72. DOI: 10. 1057/palgrave.jdm.3240019.
- [119] Roberto Mora, Ann Clarke, and Per Freytag. "B2B market segmentation: A systematic review and research agenda." In: *Journal of Business Research* 126 (Jan. 2021), pp. 415–428. DOI: 10.1016/j.jbusres.2020.12.070.
- [120] María Óskarsdóttir, Bart Baesens, and Jan Vanthienen. "Profit-Based Model Selection for Customer Retention Using Individual Customer Lifetime Values." In: Big Data 6 (Mar. 2018), pp. 53–65. DOI: 10.1089/big.2018.0015.
- [121] María Óskarsdóttir et al. "Social Network Analytics for Churn Prediction in Telco: Model Building, Evaluation and Network Architecture." In: Expert Systems with Applications 85 (May 2017). DOI: 10.1016/j.eswa.2017.05.028.
- [122] María Óskarsdóttir et al. "Time series for early churn detection: Using similarity based classification for dynamic networks." In: Expert Systems with Applications 106 (Apr. 2018). DOI: 10.1016/j.eswa.2018.04.003.
- [123] Yunus Emre Özköse, Ali Haznedaroğlu, and Levent M. Arslan. "Customer Churn Analysis with Deep Learning Methods on Unstructured Data." In: 2021 Innovations in Intelligent Systems and Applications Conference (ASYU). 2021, pp. 1–5. DOI: 10.1109/ASYU52992.2021.9598974.
- [124] Peter Paauwe, Peter Putten, and Michiel Wezel. "DTMC:

 An actionable e-customer lifetime value model based on

- markov chains and decision trees." In: vol. 258. Aug. 2007, pp. 253–262. DOI: 10.1145/1282100.1282147.
- [125] Lawrence Page et al. "The PageRank Citation Ranking: Bringing Order to the Web." In: Technical Report. Stanford InfoLab (Nov. 1998).
- [126] Savvas Papagiannidis and Eleftherios Alamanos. "Going on a journey: A review of the customer journey literature." In: Journal of Business Research 125 (Mar. 2021), pp. 336–353. DOI: 10.1016/j.jbusres.2020.12.028.
- [127] Parag Pendharkar. "Genetic algorithm based neural network approaches for predicting churn in cellular wireless network services." In: Expert Systems with Applications 36 (Apr. 2009), pp. 6714–6720. DOI: 10.1016/j.eswa. 2008.08.050.
- [128] Ana Perišić, Dubravka Šišak Jung, and Marko Pahor. "Churn in the mobile gaming field: Establishing churn definitions and measuring classification similarities." In: Expert Systems with Applications 191 (2022), p. 116277. ISSN: 0957-4174. DOI: https://doi.org/10.1016/j.eswa. 2021.116277.
- [129] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. "Deep-Walk: Online Learning of Social Representations." In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Mar. 2014). DOI: 10.1145/2623330.2623732.
- [130] Phillip Pfeifer and Robert Carraway. "Modeling Customer Relationships Using Markov Chains." In: Journal

- of Interactive Marketing 14 (Mar. 2000), pp. 43–55. DOI: 10.1002/(SICI)1520-6653(200021)14:23.0.CO;2-H.
- [131] Girish Punj and David W. Stewart. "Cluster Analysis in Marketing Research: Review and Suggestions for Application." In: Journal of Marketing Research 20.2 (1983), pp. 134–148. DOI: 10.1177/002224378302000204.
- [132] Nicholas J. Radcliffe and Patrick D. Surry. "Real-World Uplift Modelling with Significance-Based Uplift Trees." In: White Paper TR-2011, Stochastic solutions, 2012.
- [133] Anand Rajaraman, Jure Leskovec, and Jeffrey Ullman. Mining of Massive Datasets. Jan. 2014. DOI: 10.1017 / CBO9781139058452.
- [134] Papassapa Rauyruen and Kenneth E. Miller. "Relationship quality as a predictor of B2B customer loyalty." In: Journal of Business Research 60.1 (2007), pp. 21–31. ISSN: 0148–2963. DOI: https://doi.org/10.1016/j.jbusres.2005. 11.006.
- [135] Frederick Reichheld. "The One Number you Need to Grow." In: Harvard business review 81 (June 2004), pp. 46–54, 124.
- [136] Werner Reinartz and V. Kumar. "The Impact of Customer Relationship Characteristics on Profitable Lifetime Duration." In: Journal of Marketing 67 (Jan. 2003), pp. 77–99. DOI: 10.1509/jmkg.67.1.77.18589.
- [137] Werner Reinartz, Jacquelyn Thomas, and V. Kumar.

 "Balancing Acquisition and Retention Resources to
 Maximize Customer Profitability." In: Journal of Market-

- ing 69 (Feb. 2005), pp. 63-79. DOI: 10.1509/jmkg.69.1.63. 55511.
- [138] Michael Reusens et al. "A note on explicit versus implicit information for job recommendation." In: Decision Support Systems 98 (2017), pp. 26–35. ISSN: 0167-9236. DOI: https://doi.org/10.1016/j.dss.2017.04.002.
- [139] Francesco Ricci, Lior Rokach, and Bracha Shapira. "Recommender Systems Handbook." In: vol. 1-35. Oct. 2010, pp. 1-35. DOI: 10.1007/978-0-387-85820-3_1.
- [140] Yossi Richter, Elad Yom-Tov, and Noam Slonim. "Predicting Customer Churn in Mobile Networks through Analysis of Social Groups." In: Apr. 2010, pp. 732–741. DOI: 10.1137/1.9781611972801.64.
- [141] Hans Risselada, Peter Verhoef, and Tammo Bijmolt. "Staying Power of Churn Prediction Models." In: Journal of Interactive Marketing 24 (Aug. 2010), pp. 198–208. DOI: 10.1016/j.intmar.2010.04.002.
- [142] Michael Rodriguez, Robert Peterson, and Vijaykumar Krishnan. "Social Media's Influence on Business-To-Business Sales Performance." In: The Journal of Personal Selling and Sales Management 32 (July 2012), pp. 365– 378. DOI: 10.2307/23483287.
- [143] Lisa Schetgen, Matthias Bogaert, and Dirk Van den Poel. "Predicting donation behavior: Acquisition modeling in the nonprofit sector using Facebook data." In: Decision Support Systems 141 (Nov. 2020). DOI: 10.1016/j.dss.2020. 113446.

- [144] Harald Scheule, Daniel Rösch, and Bart Baesens. Credit Risk Analytics: The R Companion. Nov. 2017. ISBN: 978-1977760869.
- [145] David Schmittlein, Donald Morrison, and Richard Colombo. "Counting Your Customers: Who-Are They and What Will They Do Next?" In: Management Science 33 (Jan. 1987), pp. 1–24. DOI: 10.1287/mnsc.33.1.1.
- [146] D Sculley et al. "Hidden Technical Debt in Machine Learning Systems." In: NIPS (Jan. 2015), pp. 2494–2502.
- [147] Suvash Sedhain et al. "AutoRec: Autoencoders Meet Collaborative Filtering." In: May 2015, pp. 111–112. DOI: 10. 1145/2740908.2742726.
- [148] Savannah Shi and Michael Trusov. "The Path to Click: Are You on It?" In: Marketing Science 40 (Oct. 2020). DOI: 10.1287/mksc.2020.1253.
- [149] Wendell Smith. "Product Differentiation and Market Segmentation as Alternative Marketing Strategies." In: Journal of Marketing 21 (July 1956), pp. 3–8. DOI: 10.2307/1247695.
- [150] Michał Sołtys, Szymon Jaroszewicz, and Piotr Rzepakowski. "Ensemble Methods for Uplift Modeling." In: Data Mining and Knowledge Discovery 29.6 (Nov. 2015), pp. 1531–1559. DOI: 10.1007/s10618-014-0383-9.
- [151] Eugen Stripling et al. "Profit maximizing logistic model for customer churn prediction using genetic algorithms." In: Swarm and Evolutionary Computation 40 (Dec. 2017). DOI: 10.1016/j.swevo.2017.10.010.

- [152] Erik Štrumbelj and Igor Kononenko. "Explaining prediction models and individual predictions with feature contributions." In: *Knowledge and Information Systems* 41 (Dec. 2013), pp. 647–665. DOI: 10.1007/s10115-013-0679-x.
- [153] Panagiotis Symeonidis and Andreas Zioupos. Matrix and Tensor Factorization Techniques for Recommender Systems. Jan. 2016. ISBN: 978-3-319-41356-3. DOI: 10.1007/978-3-319-41357-0.
- [154] Alessandro Terragni and Marwan Hassani. "Analyzing Customer Journey with Process Mining: From Discovery to Recommendations." In: Aug. 2018, pp. 224–229. DOI: 10.1109/FiCloud.2018.00040.
- [155] Dirk Thorleuchter, Dirk Van den Poel, and Anita Prinzie. "Analyzing existing customers' websites to improve the customer acquisition process as well as the profitability prediction in B-to-B marketing." In: Expert Syst. Appl. 39 (Feb. 2012), pp. 2597–2605. DOI: 10.1016/j.eswa.2011.08. 115.
- [156] Robert Tibshirani. "Regression shrinkage selection via the LASSO." In: *Journal of the Royal Statistical Society Series B* 73 (June 2011), pp. 273–282. DOI: 10.2307/41262671.
- [157] Kevin Trainor et al. "Social media technology usage and customer relationship performance: A capabilities-based examination of social CRM." In: *Journal of Business Research* 67 (June 2014), pp. 1201–1208. DOI: 10.1016/j.jbusres.2013.05.002.

- [158] Alfred Ultsch. "Emergent self-organising feature maps used for prediction and prevention of churn in mobile phone markets." In: Journal of Targeting, Measurement and Analysis for Marketing 10 (Mar. 2002), pp. 314–324. DOI: 10.1057/palgrave.jt.5740056.
- [159] Tony Van Gestel et al. "Benchmarking Least Squares Support Vector Machine Classifiers." In: Machine Learning 54 (June 2002). DOI: 10.1023/B:MACH.0000008082. 80494.e0.
- [160] Seppe Vanden Broucke and Bart Baesens. Managing Model Risk: Lessons and experiences from industry and research on the challenges and dangers of analytical models. 2021. ISBN: 979-8521686988.
- [161] D. Vélez et al. "Churn and Net Promoter Score fore-casting for business decision-making through a new stepwise regression methodology." In: *Knowledge-Based Systems* 196 (Mar. 2020), p. 105762. DOI: 10.1016/j.knosys. 2020.105762.
- [162] Wouter Verbeke, Bart Baesens, and Cristián Bravo. Profit Driven Business Analytics: A Practitioner's Guide to Transforming Big Data into Added Value. Jan. 2018.
- [163] Wouter Verbeke, David Martens, and Bart Baesens. "Social network analysis for customer churn prediction." In: Applied Soft Computing 14 (Jan. 2014), pp. 431–446. DOI: 10.1016/j.asoc.2013.09.017.
- [164] Wouter Verbeke et al. "Building comprehensible customer churn prediction models with advanced rule in-

- duction techniques." In: Expert Systems with Applications 38 (Mar. 2011), pp. 2354–2364. DOI: 10.1016/j.eswa. 2010.08.023.
- [165] Wouter Verbeke et al. "New insights into churn prediction in the telecommunication sector: A profit driven data mining approach." In: European Journal of Operational Research 218 (Apr. 2012), pp. 211–229. DOI: 10.1016/j.ejor.2011.09.031.
- [166] Thomas Verbraken, Wouter Verbeke, and Bart Baesens. "A Novel Profit Maximizing Metric for Measuring Classification Performance of Customer Churn Prediction Models." In: IEEE Transactions on Knowledge and Data Engineering 25 (Jan. 2012). DOI: 10.1109/TKDE.2012.50.
- [167] Thomas Verbraken et al. "Development and application of consumer credit scoring models using profit-based V classification measures." In: European Journal of Operational Research 238 (Oct. 2014), pp. 505–513. DOI: 10. 1016/j.ejor.2014.04.001.
- [168] A. Viterbi. "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm." In: IEEE Transactions on Information Theory 13.2 (1967), pp. 260– 269. DOI: 10.1109/TIT.1967.1054010.
- [169] Nhi Vo et al. "Leveraging unstructured call log data for customer churn prediction." In: Knowledge-Based Systems 212 (Jan. 2021), p. 106586. DOI: 10.1016/j.knosys. 2020.106586.

- [170] Slobodan Vucetic and Zoran Obradovic. "Collaborative Filtering Using a Regression-Based Approach." In: Knowl. Inf. Syst. 7 (Feb. 2005), pp. 1–22. DOI: 10.1007/s10115-003-0123-8.
- [171] Florian Wangenheim and Tomás Bayón. "The Chain From Customer Satisfaction via Word-of-Mouth Referrals to New Customer Acquisition." In: Journal of the Academy of Marketing Science 35 (June 2007), pp. 233–249. DOI: 10.1007/s11747-007-0037-1.
- [172] Michel Wedel and Wagner Kamakura. Market Segmentation: Conceptual and Methodological Foundations. Vol. 8. Jan. 2000. ISBN: 978-1-4613-7104-5. DOI: 10.1007/978-1-4615-4651-1.
- [173] Jochen Weerdt et al. "A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs." In: *Inf. Syst.* 37 (Nov. 2012), pp. 654–676. DOI: 10.1016/j.is.2012.02.004.
- [174] Chih-Ping Wei and I-Tang Chiu. "Turning telecommunications call details to churn prediction: A data mining approach." In: Expert Systems with Applications 23 (Aug. 2002), pp. 103–112. DOI: 10.1016/S0957-4174(02)00030-1.
- [175] Heike Wolters, Christian Schulze, and Karen Gedenk. "Referral Reward Size and New Customer Profitability." In: Marketing Science 39 (Nov. 2020), pp. 1166–1180. DOI: 10.1287/mksc.2020.1242.
- [176] Ken Wong. "Using Cox regression to model customer time to churn in the wireless telecommunications in-

- dustry." In: Journal of Targeting, Measurement and Analysis for Marketing 19 (Mar. 2011). DOI: 10.1057/jt.2011.1.
- [177] Jiyong Zhang and Pearl Pu. "A recursive prediction algorithm for collaborative filtering recommender systems."
 In: RecSys 07: Proceedings of the 2007 ACM conference on Recommender systems. Jan. 2007, pp. 57–64. DOI: 10. 1145/1297231.1297241.
- [178] Xiaohang Zhang et al. "Predicting customer churn through interpersonal influence." In: *Knowledge-Based* Systems 28 (Apr. 2012), pp. 97–104. DOI: 10.1016/j.knosys. 2011.12.005.
- [179] Bing Zhu, Bart Baesens, and Seppe vanden Broucke. "An empirical comparison of techniques for the class imbalance problem in churn prediction." In: *Information Sciences* 408 (Apr. 2017). DOI: 10.1016/j.ins.2017.04.015.

Index

A	assignment decision, 62, 67
A/B testing, 396	association rules, 85
absorbing state, 260	AUC, see area under the ROC
accuracy, 144, 166	curve
accuracy ratio, 75, 432	auctioning algorithm, 155
action plan, 241, 433	autocorrelation, 277
Ad network, 159	autoencoder, 92
ad overloading, 185	average classification profit,
adjacency matrix, 215	223-225
administrative cost, 227	average linkage, 80
aggregation, 121	average precision, 392
agreement statistic, 394	
alignment analysis, 295	В
Amazon, 23, 31, 33, 156, 181, 183,	B2B, see Business-to-Business,
312, 373, 375, 380, 382,	335
386, 406, 410	B2C, see Business-to-Consumer
analytical model	backtesting, 240, 431
goal of, 114	backward compatibility, 428
performance of, 71	bagging, 68, 239
analytics process model, 44	Baidu, 155
anonymization, 435	bandit problem, 268
API, 424	banner, 155
Apple, 29, 30, 183	base classifier, 68
application server, 423	Baymard Institute, 288
area under the precision-recall	benchmarking, 407
curve, 391	betweenness, 217
area under the ROC curve, 74, 144,	bias, 176
166, 211, 223, 231, 235,	billboard, 154
240, 391	binary classification, 154
ARIMA, 112	binary target, 165

binomial test, 240, 432	Detection
binomial text, 438	chaos, 62
black box, 92, 221	checkout abandonment rate, 186
BlueCourses, 155, 296	Chi Squared Automatic
boosting, 68	Interaction Detection,
bootstrap, 69	60
border point, 337	Chi-squared testing, 259
bounce rate, 161	Chief Analytics Officer (CAO), 426
bounding function, 58	churn, 45
box plot, 50	active, 203
Box, George, 437	expected, 203
branch, 61	forced, 203
brand equity, 29	passive, 203
brick and mortar company, 385	time of, 212
browser, 159	churn prediction, 109, 114, 202, 431
business expert, 222	churn prevention, 221
business problem, 45	churn prevention campaign, 222
business strategy, 241	churn rate, 313
Business-to-Business, 137	City Block distance, 79
Business-to-Consumer, 137	class imbalance, 239
C	classification, 57
C C C C C C C C C C C C C C C C C C C	classification accuracy, 73, 223,
C4.5, 60, 234	391
calibration, 433 Calinski-Harabasz index, 351	Classification And Regression
call detail records, 213, 237, 240	Trees, 60, 234
call network, 213	classification error, 211
campaign, 171	classification tree, 61
campaign management, 182	click density analysis report, 299
capping, 51	click map, 300
CART, see Classification And	clickstream, 91
Regression Trees	clickstream data, 158, 162
cart abandonment rate, 186	clickthrough rate, 373
Cartesian coordinates, 164	closeness, 217
catalog, 154	clustering, 77
catalog design, 89	agglomerative algorithms, 78
categorical target, 57	divisive algorithms, 78
causal inference, 171	evaluation, 82
centrality measure, 217	hierarchical, 77
centroid, 80, 82	non-hierarchical, 77
centroid method, 80	CLV, see Customer Lifetime Value
CHAID, see Chi Squared	CLV-sensitive loss function, 242
Automatic Interaction	coefficient sign, 241

cold start problem, 379, 389, 395,	regression, 211, 212
407	credit card fraud, 122
collaborative filtering, 388	Criteo, 31
collective inferencing, 217	CRM, see customer relationship
commercial software, 427	management
community, 219	cross validation, 352
competitor, 206	cross-selling, 32, 180, 372
complementary effect, 89	cross-validation, 72
complete linkage, 80	Cumulative Incremental Gains,
computational complexity, 406	179
conditional probability, 87	cumulative logistic regression, 274
confidence, 87–89	Cumulative Uplift curve, 179
confidence interval, 67	customer acquisition, 132, 154, 226
conformance checking, 294	customer capitalism, 23
confusion matrix, 72, 211, 223, 391	customer cohort chart, 135
containerization, 427	customer equity, 28, 121, 267
content filtering, 388	customer heterogeneity, 271, 329
contextual data, 387	customer intimacy, 35
Continuous development,	customer journey, 91, 286
integration,	customer journey analysis, 159,
deployment (CI/CD),	286
425	Customer Lifetime Value
continuous target, 52	approaches to model, 35
contractual setting, 203	definition of, 25
control group, 172	discount rate, 27
conversion, 391	example of, 26
convolutional neural network, 92	model deployment, 422
cookie, 158, 296	model documentation, 430
core point, 337	model governance, 425
correlation, 112	model monitoring, 431
cosine measure, 402	revenues and costs, 28
cosine similarity, 404	survival probability, 28
cost of contact, 227	time horizon, 27
cost-benefit distribution, 225	customer migration, 273
cost-benefit matrix, 223	customer migration mobility, 272
cost-benefit matrix, 224	customer onboarding, 182
cost-benefit parameters, 229	customer population, 226
Costco, 23	customer relationship
CounterPoint, 30	management, 108
coupon, 154	customer retention, 31, 154
coupon code, 182	customer segment, 121
Cox proportional hazards	customer segmentation, 109, 114

customer-product network, 238	discount factor, 264, 269
cut-off, 74, 223	distillation, 346
	distortion function, 349
D	diversity, 394
data access request, 435	do not disturbs, 170, 220
data dependency, 424	do-not-disturbs, 226
data governance, 424	Docker, 425
data mart, 45	document management system,
data preprocessing, 46	430
data quality, 183	documentation test, 430
data risk, 437	domain knowledge, 241
data scientist, 81, 162, 174, 429, 434	double classifier approach, 171
data set split up, 71	down-selling, 32, 181, 372
data warehouse, 45	downgrade, 261
Datareportal, 138	downturn, 206
dayparting, 183	dummy variable, 173
DBSCAN, 337	Dunn index, 351
deboarding, 186	duplicate data, 46
decile, 176	duration dependence effect, 277
decision table, 222, 241	dynamic programming, 270, 277
decision tree, 60, 83, 166, 172, 211,	dynamic segmentation, 277, 331
218, 221, 231, 234, 241,	
259, 335, 346, 395, 432	E
deep learning, 92, 158, 162, 409	e-mail advertising, 155
DeepWalk, 219	e-mail marketing, 182
dendrogram, 80	early stopping, 66
density-based clustering, 337	early warning signal, 209
derivative, 70	echo chamber, 379
descriptive analytics, 77, 84, 85, 91,	edge, 214
112	egonet, 216
descriptive statistics, 47	elbow method, 349
detractor, 24, 205	Electronic Communications
development data, 71	Privacy Act (ECPA), 436
development governance, 424	embedding, 218
development risk, 437	EMP, see Expected Maximum
DevOps, 429	Profit
diagonal, 75	EMPC, see expected maximum
difference modeling, 169	profit for churn
difference score method, 171	ensemble method, 211
dimensionality reduction, 343	ensemble methods, 68, 239
direct changeover, 422	entropy, 63, 395
directed link, 215	error, 166
discount, 154	error rate, 73, 391

estimation data, 71	funnel plot, 298
EU-US Privacy Shield, 436	Fuzzy Miner, 294
Euclidean distance, 79	fuzzy set theory, 338
Euclidean norm, 402	
event log, 290	G
evolutionary algorithm, 233	Gain, 64
evtree, 234	gains chart, 167
Expectation-Maximization (EM)	Gamma distribution, 314, 316
algorithm, 342	Gamma/Gamma submodel, 312,
Expected Maximum Profit, 239	315
expected maximum profit for	Garbage In, Garbage Out, 46
churn, 231-233, 235	GARCH, 112
Expected Maximum Profit	Gaussian mixture model, 340
measure, 229	GDPR, 184, 435
explanatory variable, 53	general segmentation base, 332
explicit response, 156	generative adversarial networks,
exponential, 110	92
exponential distribution, 313	genetic algorithm, 232
	geo-targetting, 183
F	geodesic, 217
F-score, 74, 391	geographical data, 157
F1 measure, 232, 235	geographical database, 158
Facebook, 29, 138, 155, 213, 286,	GIGO, see Garbage In, Garbage
333	Out
fake user, 409	Gini, 63
false negative, 72, 224	GMM, see Gaussian mixture
false positive, 72, 224, 392	model
feature, 53, 162, 215	Goodman-Kruskal γ , 394
feature engineering, 162, 208, 215	Google, 155, 161, 217, 287, 346, 394
feature representation, 218	Google Adsense, 160
feature space, 340	Google Analytics, 161, 296
firmographics, 333	Google Street View, 157
first party cookie, 159	grace, 186
fitness function, 233	gradient boosting, 70
flyer, 154	gradient descent, 232
focal company, 333	gross effect, 171
focus group, 290	ground truth, 347
fraud analytics, 122	
fraud detection, 122	Н
frequency, 111, 313	H-measure, 232
frequent itemset, 87	harmonic average, 74
front-loading, 393	Health Insurance Portability and
funnel analysis, 298	Accountability Act

(HIPAA), 436	internal node, 61
heatmap, 300	interpetability, 92, 240
heterogeneity, 77	interpretability, 114, 162, 166, 174,
hidden Markov model, 146, 277	211, 241, 397
hierarchical clustering, 271, 336	interpretation, 82, 113
high-dimensional data, 56, 337	Interquartile Range, 50
historical scenario, 274	interview, 290
hit rate, 232, 373	intra-transaction pattern, 90
hold out data, 71	IQR, see Interquartile Range, 51
homogeneity, 77	IT environment, 424
homophily, 213, 219	item, 376
Hopfield network, 345	item coverage, 395
Hopfield-Kagmar (HK) clustering	item-item collaborative filtering,
algorithm, 345	404
Hosmer-Lemeshow test, 240, 432	itemset, 86
HR analytics, 122	
HTTP(S), 158	J
hub node, 219	Jaccard index, 336
hybrid filtering, 389	Jack Brennan, 23
hypothetical scenario, 274	JavaScript, 160, 295
	Jeff Bezos, 23
I	Jim Sinegal, 23
IBM, 429	
identity matrix, 272	K
implicit response, 156	k-means clustering, 78, 271
impurity, 62	k-nearest neighbor, 397
incomplete data, 46	Kaggle, 70
inconsistent data, 46	Kaplan Meier analysis, 169, 212
independent variable, 53	KDDcup, 70
indirect approach, 221	KDnuggets, 163
individual conditional expectation	Kendall's $ au$, 394
(ICE) plots, 222	knowledge based filtering, 389
Inductive Miner, 294	knowledge model, 387
information filtering, 374	Kolmogorov-Smirnov distance,
information overload, 371	166
information retrieval, 374, 394	
Instagram, 138, 213	L
insurance fraud, 122	LASSO, 56, 231
inter-transaction pattern, 90	latent variable, 169
interaction, 173	lead, 135, 136, 141
three-way, 112	lead conversion prediction, 142
two-way, 112	lead list, 233, 236
interestingness measure, 88	leaf node, 61, 233

leakage, 298	Markov assumption, 259
leakage point, 291	Markov chain
least squares method, 54	finite-valued, 258
left-censored, 168	network representation, 260
lif, 211	Markov chains, 120, 258
lifestyle, 333	Markov decision process, 267
lifetime value, 239	Markov reward process, 264
lift, 88, 231	matrix decomposition, 408
lift curve, 144, 211, 223, 228	matrix factorisation, 408
lift value, 211	maximum likelihood, 60, 259, 276,
LIME, 222	314, 316, 342
lineage, 423, 427	maximum profit, 223
linear decision boundary, 162	maximum profit for churn, 232,
linear regression, 52, 112, 168	235
LinkedIn, 213	Maximum Profit measure, 225
Lo's approach, 173, 221	McDonalds, 29
logarithmic transformation, 59	McKinsey, 288, 375
logistic regression, 59, 112, 162,	mean, 48
166, 172, 211, 218, 221,	mean absolute deviation, 76, 391
231, 241, 274	Mean Average Precision (MAP),
long tail problem, 385	394
look-alike modeling, 137, 143	mean squared error, 67, 76
lookers to bookers rate, 373	median, 48, 50
loss function, 70	memoryless random process, 259
lost causes, 170, 220	meta learning schema, 68
	metadata, 155, 424
M	method of moments, 314, 316
macro-economic data, 205	metrics, 108
MAD, see mean absolute deviation	Microsoft, 429
Mahalanobis distance, 336	Microsoft Excel, 317
majority class, 62	migration matrix, 261
managerial perspective, 229	Milton Friedman, 22
managerial risk, 437	minimum error rate, 232, 235
Manhattan distance, 79	misclassification error, 65, 231
mapping function, 218	missing value, 48
market basket analysis, 85, 89	
market segmentation, 324	delete strategy, 48 indicator variable, 49
marketeer, 45, 81, 166, 174, 222,	
236, 324	keep strategy, 48
marketing action, 270	replace strategy, 48
marketing campaign, 154, 165	mixture method, 338
marketing qualified leads, 141	mobile app, 423
Markey, 135, 202	mobile gaming, 204

mobility metric, 273	neurophysiological measurement
mode, 48	291
model audit, 426	next best offer, 89
model based collaborative	node, 214
filtering, 408	node2vec, 219
model calibration, 240	noise point, 337
model construction, 231	non-contractual setting, 204, 312
model discrimination, 240	non-hierarchical clusteirng, 271
model governance, 425	non-hierarchical clustering, 336
model monitoring, 431	non-parametric, 67
model risk, 437	non-subscription setting, 204
model selection, 231	normality, 67
model stability, 240	NPS, see net promotor score, 24
moments of truth model, 287	nuke attack, 410
monetary, 111	
monotonicity, 241	0
move map, 302	observation period, 208
mover/stayer model, 271	observational data, 291
MovieLens, 401	odds, 59
MPC, see maximum profit for	off-line campaign, 154
churn	offer fatigue, 124, 184
MQL, see marketing qualified	OLS, see ordinary least squares
leads	on-line campaign, 154, 182
MSE, see mean squared error	on-line customer journey
multicollinearity, 112	analysis, 295
·	on-line retailer, 158
N	one-nearest neighbor, 237
navigation analysis, 295	open source software, 427
naïve Bayes, 211	open-source, 70 OpenStreetMap, 158
neighborhood, 216	operational efficiency, 166, 211
higher-order, 216	operational risk, 437
net effect, 171	Operational risk, 437 Operations Research, 258
net lift modeling, 169	opportunity cost, 202
net profit, 227	opt-out, 184
Net Promotor Score, 24, 204	optimal policy, 269
Netflix, 31, 33, 181, 203, 375, 377	ordinal logistic regression, 274
prize, 375	ordinary least squares, 54, 57
network, 207	OSM, see OpenStreetMap
data, 207	outlier, 49, 337
definition, 215	detection, 50
graph, 214	treatment, 50
neural network, 158, 211, 222, 342	overfitting, 65, 70

P	predictive model, 71, 165
p-value, 113	predictive process monitoring,
page overlay report, 299	295
page tagging, 158, 296	prescriptive analytics, 171
PageRank, 155, 217	prior probability, 88
parallel changeover, 422	privacy, 219, 434
parametric survival analysis, 169	Privacy Act of 1974, 436
Pareto principle, 108	privacy commission, 435
Pareto/NBD submodel, 312	probability, 74
partial dependence plots, 222	probability model, 312
path analysis, 296	process discovery, 294
Pay per Click, 155	process mining, 293
Pearson correlation, 75, 391, 401,	Proctor & Gamble, 287
404	product bundling, 85, 89
percentile value, 48	product specific segmentation,
perfect model, 77	333
perfect uplift model, 178	product-specific segmentation
performance, 166	base, 332
performance measure, 71	productionization, 425
performance period, 208	profiling, 353
permutation-based feature	profit, 167, 315, 396
importance, 113	profit based objective function,
persistent cookie, 159, 298	231
personalized recommendation,	profit driven classification, 231
377	profit driven evaluation, 223
persuadables, 169, 220	profit-based hit rate, 233
phased changeover, 422	ProfLogit, 231
Pointillist, 289	ProfTree, 231, 233
Poisson distribution, 338	promotor, 24, 205
Poisson process, 313	proportional hazards regression, 169
polar coordinates, 164	proportional odds model, 275
policy iteration, 270	prospect, 108, 124, 136, 141, 154, 166
policy update, 269	prospect conversion prediction
polynomial regression, 55	modeling, 142
popularity bias, 407	pruning, 66, 69
population distribution, 83	purchasing process, 185
post processing, 45	push attack, 410
post-pruning, 66	r ,
PPC, see Pay per Click	Q
pre-pruning, 66	Qini curve, 179
precision, 74, 166, 211, 235, 391, 392	Qini measure, 179
predictive analytics, 91, 112	quartile, 50

first, 50	framework, 108
second, 50	independent sorting, 115
third, 50	operationalizing, 114
quintile, 115	usage, 118
	RFM score, 114, 215
R	RFMPD, 121
random forests, 68, 69, 113, 222,	ridge regression, 56
239	right to access, 435
random model, 75, 179	right to be informed, 435
ranking, 390, 392	right to erase, 435
rating bias, 385, 403, 405	RMSE, see root mean squared
rating matrix, 381, 398	error
recall, 74, 166, 211, 232, 235, 391	Rob Markey, 25
Receiver Operating Characteristic	robust, 67
curve, 72, 74	ROC, see Receiver Operating
recency, 109, 313	Characteristic curve
recommender system, 89, 92, 181,	Roger Martin, 23
370	root mean squared error, 77, 376,
recurrent neural network, 92	391
recursive partitioning algorithm,	root node, 61, 68
60	Royal Bank of Canada, 30
referral reward, 146	rule antecedent, 85, 87
referrer information, 161	rule based methods, 211, 335
regression, 211	rule based model, 343
regression model, 75	rule consequent, 85, 87
regression tree, 61, 168	runs on my machine
regressor, 53	phenomenon, 425
regularization, 56	•
reinforcement learning, 268	S
relational network learner, 211	sales funnel, 141, 142
relationship buyer, 203	sales qualified leads, 141
relevance score, 376	sampling, 47
representation learning, 218	SAS Institute, The (SAS), 429
residual, 54, 70	scalability, 384, 396
response model, 109	scatter plot, 75
response modeling, 154	scroll map, 302
response variable, 53	search engine marketing, 155
retention campaign, 230, 233	Search Engine Optimization, 155
retention equity, 29	search results, 155
retention modeling, 202	search term, 155, 161
RFM, 52, 108, 162, 317, 333	seasonality, 123
analysis, 260	security, 429, 434
dependent sorting, 116	See5, 60

segment, 77	software engineering, 425
segmentation, 304	SOM, see self-organizing map
self-organizing map, 343	sparsity, 384
senior management, 426	Spearman's rank order
sensitivity, 74, 166, 223, 391	correlation, 394
SEO, see Search Engine	specification risk, 437
Optimizationt	specificity, 74, 166, 223
sequence, 89	splitting decision, 62, 66
sequence field, 90	Spotify, 181
sequence rule, 89	SQL, see sales qualified leads
serendipity, 371, 378, 395	SQL view, 435
server log, 158	SSE, see sum of squared errors
analysis, 158	stability index, 241
service blue print, 294	staging area, 291
service blueprint, 287	standard deviation, 48, 67
service desk interaction, 206	standard error, 113
session cookie, 159	state stickiness, 277
Shapley values, 113, 222	static segmentation, 331
shareholder primacy, 22	statistical rule, 86
shareholder value, 22	stopping decision, 62, 67
shelf organization, 85, 89	store layout, 89
Shopif, 134	stress testing, 274
shortest path, 217	structural equivalence, 219
shrinkage, 56	subscription setting, 203
silhouette criterion, 351	substitution effect, 89
silhouette width criterion, 351	sum of squared errors, 82
similarity forests, 237	support, 86, 88, 89
similarity measure, 79, 401	support vector machine, 211
simplicity, 66	sure things, 170, 220
single linkage, 80	survey, 205, 206, 290
Singular Value Decomposition	survival analysis, 169, 239
(SVD), 409	Т
site abandonment rate, 185	target, 156, 165
skewness, 48	target variable, 53, 83, 85, 205
social influencer, 122	technical debt, 423
social leader, 213	Telco, 203, 207, 209, 213, 237, 240,
social listening, 34	241
social media, 122	tenure, 111
social media data, 138	ternary classification, 204
social network, 213, 239	test set, 71, 175, 390
social tie, 215	textual data, 207
sociodemographic data, 157, 205	third party cookie, 159
BF 2300, 10., 200	F == 1, 11 11 11 11 11 11 11 11 11 11 11 11

three second rule, 184	up-selling, 32, 180, 372
threshold, 87	upgrade, 261
throughput, 396	uplift, 176, 396
tiering system, 335	uplift by decile graph, 177
time series, 112, 237	uplift effect, 124
tobit regression, 168	uplift modeling, 169, 220
top N ranking, 376	user, 376
top decile lift, 212	user coverage, 395
top decile Qini, 179	user ID, 159
total cost of ownership (TCO), 427	user interest, 379
touch heatmap, 300	explicit, 380
touchpoint, 291	implicit, 380
trace, 290	user profile, 387
traffic light, 433	user-user collaborative filtering,
training code, 424	397
training set, 65, 67, 71, 175	users flow report, 297
transaction buyer, 203	UV decomposition, 409
transaction identifier, 85	
transactional data, 157, 205	V
transactions data set, 86	validation risk, 437
transition probability, 259	validation set, 65, 67, 71
treatment, 171	value equity, 29
treatment group, 172	value iteration, 270
tree boosting, 70	value update, 269
trend, 111	Vanguard, 23
triangulation, 290	variable selection, 173, 205
Tripadvisor, 380	vector quantization, 343
true lift modeling, 169	vendor lock-in, 429
true negative, 72, 224	versioning, 427, 430
true positive, 72, 224, 392	vertex, 214
true positive rate, 211	viral churn effect, 214
truncation, 51	virtualization, 427
Twitter, 213	visual data exploration, 47
two-model approach, 171	visual evaluation, 176
	Viterbi algorithm, 277
U	voucher, 118, 154
undirected link, 215	
unpersonalized recommendation,	W
377	WACC, 26
unstable classifier, 68	weak classifier, 68
unstructured data, 92, 207	web analytics, 90, 122, 157, 205
unsupervised learning, 85, 325,	web data, 138
343	web page, 85

web scraping, 206
web server log, 295
web site design, 85
website, 155
weight matrix, 215
Whatsapp, 138
white box, 166, 221
winner take all, 62
winsorizing, 51
word-of-mouth, 157, 202, 213, 287
would-be churner, 226, 236

X x-hop path, 217 X-selling, 32, 372 XGBoost, 68, 70, 113, 166, 168, 211, 218, 221, 430

Y Yahoo, 155, 161 YouTube, 138, 184, 379

z z-score, 50, 79